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Abstract
Tourism affects not only the tourism industry but also society and stakeholders such 
as the environment, local businesses, and residents. Tourism recommender systems 
(TRS) can be pivotal in promoting sustainable tourism by guiding travelers toward 
destinations with minimal negative impact. Our paper introduces a composite sus-
tainability indicator for a city trip recommender system based on the users’ start-
ing point and month of travel. This indicator integrates CO

2
 e emissions for different 

transportation modes and analyses destination popularity and seasonal demand. We 
quantify city popularity based on user reviews, points of interest, and search trends 
from Tripadvisor and Google Trends data. To calculate a seasonal demand index, 
we leverage data from TourMIS and Airbnb. We conducted a user study to explore 
the fundamental trade-offs in travel decision-making and determine the weights for 
our proposed indicator. Finally, we demonstrate the integration of this indicator into 
a TRS, illustrating its ability to deliver sustainable city trip recommendations. This 
work lays the foundation for future research by integrating sustainability measures 
and contributing to responsible recommendations by TRS.

Keywords  Recommender systems · City trip recommendations · Responsible 
tourism · Sustainability · Societal fairness

1  Introduction

Recommender systems (RS) provide tailored content to individual preferences, span-
ning diverse domains like e-commerce, social media, news, and more, effectively 
managing information to prevent overload  (Abdollahpouri et  al. 2020). In travel 
and tourism, RS is pivotal in simplifying trip planning by providing personalized 
recommendations for destinations, accommodations, activities, and more (Isinkaye 
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et al. 2015). However, this is a particularly challenging domain due to the influence 
of dynamic factors such as seasonality and travel regulations  (Balakrishnan and 
Wörndl 2021), as well as constraints related to capacity-limited resources such as 
airline seats, hotel rooms, and event tickets (Abdollahpouri and Burke 2021).

Traditionally, RS focused on delivering accurate user recommendations, but in 
practice, they function as a convergence point for multiple stakeholders, making it 
a multistakeholder scenario  (Abdollahpouri et al. 2020). Recognizing the interests 
of all stakeholders becomes crucial in this dynamic. Our stakeholder classifica-
tion, inspired by  Balakrishnan and Wörndl (2021), identifies four key categories: 
consumers, item providers, platform, and society, aligning with common touristic 
recommendation scenarios. Despite this seemingly straightforward categorization, 
real-world stakeholder relationships are often more intricate. Each stakeholder is 
vested in the traveler’s journey, and optimizing consumer recommendations can 
yield benefits for all involved parties (Abdollahpouri et al. 2020). Complexities arise 
when the goals of stakeholders conflict, mainly as profit motives often drive them, 
leading to inevitable trade-offs in achieving fairness in these systems (Jannach and 
Bauer 2020). This necessitates adopting a multistakeholder approach, acknowledg-
ing stakeholders’ interdependence, and balancing their objectives when designing 
fair tourism recommender systems (TRS).

Tourism’s impact goes beyond active participants; it affects the local environment 
and businesses and profoundly influences the balance of nature. Thus, developing a 
fair TRS involves recommending sustainable options and fostering responsible tour-
ism practices. World Tourism Organization and United Nations Development Pro-
gramme define sustainable tourism as “tourism that takes full account of its cur-
rent and future economic, social and environmental impacts, addressing the needs 
of visitors, the industry, the environment, and host communities”  (Gössling 2017). 
Achieving sustainability in tourism requires interventions at various levels, includ-
ing municipal policies and regulations  (Werthner et  al. 2015). However, measur-
ing sustainability at destinations poses a significant challenge, impeding effective 
decision-making, management, and meeting destination needs (Fernández and Riv-
ero 2009). In the context of tourism, a destination is characterized by “a country, 
state, region, city, or town that is actively marketed or markets itself as an appealing 
place for tourists to visit” (Beirman 2020). A destination’s sustainability is crucial 
for long-term competitiveness and visitor satisfaction and should not solely be deter-
mined by arrival numbers or bed nights (Önder et al. 2017).

One of the essential interventions where a well-designed TRS can play a vital 
role is regulating the number of tourists. A TRS can be especially helpful in 
addressing the challenges of over- and undertourism, both of which are on the 
rise due to factors such as low-cost aviation, affordable transportation, social 
media influence, and platforms like Airbnb1 (Gowreesunkar and Vo Thanh 2020). 
Overtourism, witnessed in popular destinations like Venice, Barcelona, Rome, 
and Dubrovnik, poses threats to historic preservation, the environment, residents, 
and overall tourist experiences, making it challenging to find reasonably priced 
housing in these cities  (Dastgerdi and De  Luca 2023; Dodds and Butler 2019). 

1  https://​www.​airbnb.​com/.

https://www.airbnb.com/
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Conversely, undertourism, prevalent in under-explored destinations, results from 
a lack of infrastructure, publicity, and accessibility. Both scenarios have adverse 
consequences. For instance, the recent COVID-19 pandemic highlighted the 
adverse effects of undertourism, causing significant disruptions to the tourism 
and hotel industries (Galí 2022). To address these issues, a TRS must be designed 
to provide responsible recommendations, considering the interests of all stake-
holders. These systems should advocate for sustainable tourism practices, pro-
moting responsible tourism while offering personalized suggestions to users. This 
involves recommendations encouraging tourists to visit destinations with minimal 
environmental impact, promoting less popular yet attractive locations, and bal-
ancing the tourist load uniformly throughout the year.

A substantial amount of research has been conducted on developing fair rec-
ommendation systems that consider the interests of all stakeholders involved in 
tourism   (Rahmani et  al. 2022; Shen et  al. 2021; Weydemann et  al. 2019; Wu 
et al. 2021). However, there has been limited focus on generating sustainable rec-
ommendations  (Banerjee et  al. 2023). This paper explores the concept of mod-
eling Societal Fairness or S-Fairness. It emphasizes the impact of tourism on 
individuals who are not directly involved, such as residents, environment, and 
other stakeholders, collectively referred to as “society”  (Banerjee 2023). These 
stakeholders often encounter challenges such as rising housing prices, environ-
mental pollution, and traffic congestion due to heightened tourism activities in 
their vicinity.

In this paper, we aim to help travelers seeking recommendations for their vaca-
tions in European cities based on their starting points. We compiled a list of the 
200 most densely populated European cities to be considered destinations. Our 
proposed method aims to assess the sustainability of these destinations based on 
the month of travel and the user’s starting point. To achieve this, we assign a 
composite S-Fairness Indicator to all cities accessible from the user’s initial loca-
tion. To mitigate the adverse effects on the environment and society, we identify 
three key factors in the calculation of the S-Fairness Indicator: 

1.	 Destinations with environmentally friendly travel options, minimizing CO2e emis-
sions incurred during the travel to the destination.

2.	 Suggesting less popular yet attractive destinations.
3.	 Choosing destinations with lower demand during the specific travel month.

Our approach is designed to assist travelers in making more sustainable travel 
choices. The S-Fairness Indicator aggregates individual assessments of 
CO2e emissions, popularity and monthly seasonality. A lower number represents 
less impact on local communities and the environment. It is important to note that 
while there are existing methods to measure the individual components of the 
S-Fairness Indicator, our novelty lies in integrating them into a single metric to 
measure sustainability or S-Fairness. This metric can then be incorporated into 
TRS to recommend sustainable destinations to users.

To this end, our work makes the following contributions: 
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1.	 Defining the concept of sustainability and its elements within a city trip recom-
mender system.

2.	 Collecting and examining data on transportation CO2e emissions, as well as deter-
mining city popularity and seasonality indices.

3.	 Assigning a composite S-Fairness Indicator to cities based on a specific starting 
point and month of travel.

4.	 Executing a user study to explore fundamental travel trade-offs and ascertain the 
S-Fairness Indicator weights.

5.	 Demonstrating how our proposed indicator can be integrated into a TRS to pro-
vide sustainable city trip recommendations to users.

Our paper is structured as follows: Sect. 2 reviews prior research on city trip recom-
mendations and sustainability in TRS. Sections 3, 4, and 5, present detailed meth-
odologies for calculating the individual components of the composite S-Fairness 
Indicator score–transportation-related CO2e emissions, city popularity, and seasonal 
demand, respectively. In Sect. 6, we outline the findings from our user study on fac-
tors influencing destination choices and openness to sustainable tourism recommen-
dations.  Section 7 elucidates the concept of Societal Fairness, assigns the relevant 
indices, and subsequently describes how our indicator can be integrated into TRS 
through a dedicated user study. Finally, Sect. 8 concludes the paper, summarizing 
key findings and suggesting future studies in this area.

2 � Related work

In the context of this study, we explore the related work along two dimensions—City 
Trip recommendations in Sect. 2.1 and sustainability in tourism recommender sys-
tems in Sect. 2.2. This reflects the shift in recommender systems towards integrating 
personalization and user preferences in city trip recommendations while considering 
sustainability and societal fairness.

2.1 � City trip recommendations

City trip recommender systems are essential to simplify trip planning for users 
and cater to the evolving needs and challenges in the travel domain. Traditionally, 
recommender systems have predominantly centered on modeling user preferences 
to offer personalized suggestions. However, this domain presents distinctive chal-
lenges, including the intangibility of recommended items and dynamic factors such 
as seasonality, travel regulations, and resource constraints (Balakrishnan and Wörndl 
2021; Werthner and Ricci 2004). Recent research has emphasized addressing these 
aspects as well.

Besides techniques like collaborative filtering leveraging users’ past activities, 
similarities with other users and network-based preferences are also prevalent in 
literature (Lu et al. 2012; Dadoun et al. 2019; Pu et al. 2020). Constraints defined 
by users, such as budget or time preferences, have also been addressed as critical 
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components in tailoring travel packages  (Xie et  al. 2010; Lim et  al. 2018). How-
ever, challenges like the cold start problem and data sparsity have led to the adop-
tion of content-based approaches. These approaches construct domain models using 
relevant features for tourism, often derived from expert opinions, literature, or data-
driven methods (Liu et al. 2011; Pu et al. 2020).

While expert-driven models offer nuanced insights, their cost and complex-
ity necessitate complementing them with diverse data sources, such as Location-
based Social Networks (LBSNs) for venues  (Lu et  al. 2012; Dadoun et  al. 2019). 
For instance, the data-driven system introduced by  Roy and Dietz (2021) tailors 
composite city trips to users based on their preferences and constraints using data 
from the LSBNs. It suggests personalized itineraries for users by gathering informa-
tion such as their home region, travel duration, and venue preferences. Similarly, the 
work by Myftija and Dietz (2020) uses a data-driven characterization of cities inside 
a conversational recommender system to recommend cities as destinations.  Dietz 
and Weimert (2018) present wOndary, a platform designed for global trip planning 
and sharing via crowdsourcing. Using content-based recommendation methods and 
a structured itinerary representation, wOndary tackles issues surrounding item dis-
covery and routing in tourist trip design.  Massimo and Ricci (2019), explores the 
concept of clustering users with similar POI visit trajectories and then constructing 
a general user behavior model via inverse reinforcement learning. This model allows 
for generating recommendations based on learned behavioral patterns.

2.2 � Sustainability in tourism recommender systems

Measuring sustainability: Sustainable tourism presents complexities in defining 
objectives and indicators for a sustainable TRS. Ko (2005) assert that sustainabil-
ity concerns vary by destination, necessitating specific dimensions and methodolo-
gies tailored to each location. However, this tailored approach raises comparability 
issues, as different indicators hinder meaningful comparisons between destinations. 
In response,  Cernat and Gourdon (2012) develop the Sustainable Tourism Bench-
marking Tool (STBT), comprising 54 indicators across seven dimensions. Though 
tested in 75 countries, the tool performs well only in Indonesia, Malaysia, and Thai-
land, where data availability is higher. AgainÖnder et al. (2017) suggest prioritiz-
ing the analysis of existing sustainable tourism indicators over introducing new, less 
practically applicable measures. They also demonstrated the use of data envelop-
ment analysis (DEA) to benchmark urban tourism destinations by evaluating the 
available data from TourMIS. DEA enables the identification of a destination’s effi-
ciency and facilitates benchmarking against others to pinpoint areas for improve-
ment. While this approach is valuable for guiding policymakers and city developers 
in enhancing specific aspects of cities, it has not yet been integrated into TRS.

  Gorantla and Bansal (2023) utilize the circles of sustainability framework to 
assess a city’s sustainability across four domains and seven subdomains each, aggre-
gating data sources to compute a simplified sustainability index, providing valuable 
insights into city sustainability in comparison to others. In contrast, Hoffmann et al. 
(2022) adopt a fully data-driven approach, analyzing Tripadvisor data to compare 
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hotel sustainability measures. Their unsupervised statistical learning approach 
yields improved performance in classifying sustainable hotels. However, the mod-
el’s explainability is limited; while it indicates larger hotels are more likely to be 
sustainable, causality cannot be explicitly inferred.

Sustainable recommendations: While numerous studies explore the quantifi-
cation of sustainability in tourism, there is a notable scarcity of their application 
within recommender systems in this domain. A sustainable recommender system 
balances economic, environmental, and social dimensions essential for creating a 
resilient ecosystem (Gorantla and Bansal 2023). One can initiate the integration of 
features that capture user interest while simultaneously promoting sustainability. 
However, a sustainable recommender system should not be fully user-centric. The 
tourism industry involves different stakeholders, including consumers, providers, 
platforms, and society, thus it is natural for sustainable RS to implement a multi-
stakeholder approach. A recent examination of multistakeholder fairness within 
tourism recommender systems made it apparent that existing studies predominantly 
concentrate on provider and consumer stakeholders. Surprisingly, despite bearing 
significant impacts from tourism, the societal aspect is often overlooked as a stake-
holder (Banerjee et al. 2023).

A recent study by Merinov et al. (2022) introduces a multistakeholder model that 
considers not only user preferences but also the occupancy level of the destination. 
In another study by Patro et al. (2020), the multi-objective model focuses on provid-
ers’ sustainability by maintaining their exposure while also preventing overcrowd-
ing.  Pachot et  al. (2021) added local authorities as stakeholders, with economic 
growth, productive resilience, prioritizing basic necessities, and greener production 
as its objective. While (Banik et al. 2023) address overcrowding by promoting fair 
recommendations that encourage users to choose greener alternatives, they lack a 
specific method for measuring the generation of recommended items.

Our methodology differs from the state-of-the-art regarding data collection and 
analysis techniques. We employ a combination of qualitative insights from partic-
ipant feedback and quantitative data from various sources to assign a sustainabil-
ity metric to the destinations based on the users’ origin. This approach allows for a 
more nuanced understanding of tourist behavior and preferences, leading to more 
effective recommendations for city trips.

3 � Destinations, transportation, and emission estimations

Tourism contributes to approximately 8% of global CO2e emissions, stemming from 
various sources such as accommodation, food consumption, shopping, services, and 
agriculture. However, research has shown that transportation modes to and from 
destinations are the most significant contributors to the CO2e footprint, making up 
49% of emissions. This highlights the importance of considering the emissions from 
transportation as one of the key sustainability indicators in tourism, especially for 
city policymakers (Lenzen et al. 2018). These transportation-related emissions often 
result from a combination of modes chosen by travelers, the distance traveled, and 
the average length of stay  (Önder et  al. 2017). For example, longer-distance trips 
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that necessitate air travel between cities tend to incur higher emissions, posing a 
more significant environmental impact than shorter trips feasible with public trans-
port like trains. Conversely, a short-distance trip by car may result in more emis-
sions than a train.

This paper adopts the estimation of greenhouse gases (GHG) emitted by various 
transportation modes to indicate the trip’s environmental responsibility concerning 
the travelers’ starting point. In Sect. 3.1, we elaborate on the methodology employed 
for selecting our destinations, while Sect. 3.2 outlines the detailed process of gather-
ing data for various transportation modes. We examine the trade-off between travel 
times, transportation modes, their respective emissions, and the associated costs 
in  Sect.  3.3 by assigning an emissions trade-off index Z(ci) to each city ci reach-
able from the user’s point of origin. A lower Z(ci) indicates a more environmentally 
friendly and responsible tourism approach.

Our approach encourages travelers to opt for public transport, particularly for 
shorter to medium-distance destinations. Analyzing trade-off values provides 
insights into user behavior, enabling the formulation of effective policies. These pol-
icies might include strategies to improve travel time on routes with lower emissions 
but higher costs.

Subsequent sections provide detailed discussions on these aspects.

3.1 � Extracting destinations

In our scenario, a traveler is seeking a suitable city to visit for vacation from a speci-
fied starting location. They are presented with a list of European cities as potential 
destinations. The initial step involves collecting data on potential destinations for 
city trips. Our item space comprises 200 European cities or destinations spanning 
43 countries. We have chosen these destinations due to the continent’s extensive 
connectivity via various modes of transportation, including flights, rail, and road, 
making it a highly popular destination among tourists. Data for European cities is 
sourced from the world cities database  (World Cities Database 2023), filtering for 
the top 200 most populated cities, each featuring at least one airport. Subsequently, 
we calculate transportation emissions for travel to each city using three modes—
flights, driving, and rail where applicable, as explained below. Figure 1 illustrates 
the geographical dispersion of the 200 European cities considered for our analysis. It 
also shows the subset of cities specifically chosen for in-depth examination regard-
ing driving and train connections in this study.

3.2 � Data gathering: transportation

This section outlines the detailed data gathering process for each transportation 
mode across all the cities identified in Sect. 3.1.
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3.2.1 � Flights

In obtaining flight information, a major step involves associating cities with their 
respective airport details and IATA​2 codes. We gathered data from the Flugzeug-
info.net3 website, aligning the information with our city list. Notably, cities featuring 
multiple international airports were also incorporated into the dataset. This resulted 
in a compilation of 222 unique airports across 200 cities.

We established connections between airports a1 and a2 , corresponding to cities c1 
and c2 , respectively. A dedicated connection was established for each unique route 
between the two cities, resulting in 16,261 unique one-way routes. Subsequently, 
each connection served as input for querying Google Flights,4 allowing us to extract 
detailed information. We prioritized the best departing flight options based on crite-
ria such as travel time and number of stops for each trip, focusing on economy class.

We classified each route based on the Eurocontrol’s5 definition for distances, seg-
menting them into four categories: very short haul, short haul, medium haul, and 

Fig. 1   The geographical distribution of 200 European cities with at least one airport is depicted in blue, 
cities prioritized for driving are highlighted in orange, and those considered for their train networks are 
shown with a green + (color figure online)

2  https://​en.​wikip​edia.​org/​wiki/​IATA_​airpo​rt_​code.
3  https://​www.​flugz​eugin​fo.​net/.
4  https://​www.​google.​com/​travel/​fligh​ts.
5  https://​www.​euroc​ontrol.​int/.

https://en.wikipedia.org/wiki/IATA_airport_code
https://www.flugzeuginfo.net/
https://www.google.com/travel/flights
https://www.eurocontrol.int/
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long haul. Specifically, very short-haul flights covered less than 500 km, short-haul 
flights ranged from 500 to 1500 km, medium-haul flights spanned 1500 to 4000 km, 
and long-haul flights exceeded 4000 km in flying distance. The scraped data from 
Google Flights lacked information on the distances between the two cities. There-
fore, we employed the great circle distance (GCD)  (Wikipedia 2023a, (2023b)) 
measurement to calculate the distances for each route. As indicated in Table 1, our 
dataset predominantly comprised short-haul and medium-haul flights, with a com-
paratively smaller number of long-haul flights.

3.2.2 � Driving

We assume that driving between cities is not viable when the distance exceeds 
1000 kms, so we eliminate the longer connections between city pairs. This refine-
ment yielded 10,056 unique (two-way) connections spanning 200 European cities. 
Using two prominent data sources, we derived these connections’ driving distance 
and travel time.

Initially, we leveraged the Google Maps Routes API6 in the eco-friendly mode to 
acquire the most fuel-efficient driving distance and time, factoring in real-time traf-
fic conditions, obtaining the details for 4718 unique one-way routes. Subsequently, 
we utilized the Open Source Routing Machine (OSRM) API7 in driving mode to 
compute the driving distance and time between connections. OSRM, an open-source 
routing engine, relies on OpenStreetMap8 data, providing information for all 1056 
connections in our dataset. The overview of both datasets can be found in Table 1.

Both datasets contained data regarding distance, travel time, and specific route 
details between two cities. Furthermore, the Google Maps Routes API offered an 
estimate of the fuel consumption for each route. Upon conducting a comparative 
analysis, it was observed that Google and OSRM demonstrated a mean absolute 
percentage difference of 5.63% in their respective distance calculations. This diver-
gence may be attributed to the different methodologies employed by Google and 
OSRM in estimating distances, considering factors such as routes and traffic condi-
tions. It is essential to note that this paper does not explore the accuracy assessment 
of each data source.

3.2.3 � Trains

The railway network across Europe exhibits a diverse and country-specific manage-
ment infrastructure. Unfortunately, no open-source API or standardized pan-Euro-
pean platform would enable us to aggregate data seamlessly from various railway 
networks. Consequently, our approach relied on country-specific rail networks, 
focusing on Germany due to easier data accessibility. We utilized web scraping 
techniques on the Bahn.Expert website to gather the necessary information. This 

6  https://​devel​opers.​google.​com/​maps/​docum​entat​ion/​routes.
7  https://​proje​ct-​osrm.​org.
8  https://​www.​opens​treet​map.​org.

https://developers.google.com/maps/documentation/routes
https://project-osrm.org
https://www.openstreetmap.org


Modeling sustainable city trips: integrating CO
2
e emissio…

platform uses the Deutsche Bahn APIs9 to provide valuable insights into past and 
present data on trains and stations, particularly for Deutsche Bahn (DB) or German 
trains (Clasen 2020).

In our data collection process, our primary emphasis was on three prominent 
long-distance train categories in Germany—Intercity (IC), EuroCity (EC), and 
Intercity-Express (ICE). This focus was chosen because these categories encompass 
most of the major cities in Germany and extend to significant cities in neighboring 
countries, including Amsterdam, Vienna, Basel, Brussels, and others, as illustrated 
in Fig. 1. However, it’s important to note that our methodologies are adaptable and 
can be extended to incorporate data from other train providers across different Euro-
pean regions.

3.3 � Estimation of emissions from transportation modes

Transportation emissions are a major contributor to environmental harm, driving 
climate change through the release of greenhouse gases (GHGs) such as carbon 
dioxide ( CO2 ), methane (CH4), and nitrous oxide (N2O) (Lashof and Ahuja 1990). 
Among these, CO2 is the most prevalent greenhouse gas emitted by human activi-
ties, both in quantity and its overall impact on global warming. While CO2 is often 
used as a general term for greenhouse gases, this paper employs “carbon dioxide 
equivalent” ( CO2e ) to encompass the broader spectrum of emissions and their com-
bined impact (Brander and Davis 2012).

While there were discrepancies among individual studies regarding the exact 
emissions per kilometer, the overall consensus indicates that short-distance flights 
have a higher environmental impact. In contrast, trains and public transport signifi-
cantly reduce CO2e emissions. Our modeling employs an average approach, which 
is in line with the above consensus.  Table  1 presents a summary of values used 
for CO2e calculations across various transportation modes. The subsequent sections 
provide a detailed exploration of the emission calculation process and our assump-
tions for each mode of transportation.

3.3.1 � Flights

Google Flights calculate emissions per person using various factors, including the 
GCD between origin and destination airports, aircraft type, fuel burn, and flight 
occupancy following the Tier 3 methodology for emission estimates outlined by 
the European Environment Agency (EEA) (Google 2019). However, the calculation 
results in a per-passenger CO2e  contribution, which can be misleading compared to 
the overall fuel consumption for the entire journey. To facilitate a fair comparison 
with alternative transportation modes, such as rail and driving, we adopt a distance-
based estimation model proposed by Graver et al. (2019) for standard economy class 
flights. Table 1 displays the distinct CO2e values applied to three flight categories, 
categorized according to the covered distance. We also add an extra 9% correctional 

9  https://​data.​deuts​cheba​hn.​com/​datas​et.​groups.​apis.​html.

https://data.deutschebahn.com/dataset.groups.apis.html
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adjustment factor to the great-circle distance to account for delays and indirect flight 
paths, as noted by DEFRA (2007).

3.3.2 � Driving

Estimating driving emissions involves several factors: elevation, car model, fuel 
type, car size, number of occupants, and traffic conditions (Ghosh et al. 2020). To 
calculate the CO2e for the given route, we utilize the per-kilometer emission estima-
tion from Tiseo (2023), set at 96 gs per kilometer. The Google data also included 
fuel consumption estimates, allowing us to derive the CO2e values. We also com-
pute the fuel consumption-based CO2e  for the Google data, with an emission rate 
of 2.3 kgs of CO2e per liter of gasoline (Hilali and Belmaghraoui 2019). The mean 
absolute difference percentage of 10.90 between CO2e  values calculated from 
per-kilometer distance and those derived from fuel consumption estimates for the 
Google data indicates moderate variability or discrepancy between the two methods. 
To maintain simplicity and ensure standardization in the estimation calculation, we 
adopt distance-based estimates as listed in Table 1 computed for the minimum dis-
tance returned by either the Google or the OSRM data.

3.3.3 � Trains

Much like other modes of transportation discussed earlier, train emissions can vary 
depending on the type of fuel used. In Europe, where electric trains are prevalent, emis-
sions are considerably lower than diesel-powered counterparts. However, reported val-
ues exhibit discrepancies even within Europe’s predominantly electric rail network. For 
instance, Statista UK cites 41 gs of CO2e  per kilometer (Tiseo 2023), while Deutsche 
Bahn reports 32  gs of CO2e  per passenger kilometer  (Statista Research Department 
2023b). Our estimations are based on values obtained for trains from  Larsson and 
Kamb (2022), specifying 24 gs of CO2e per kilometer. We acknowledge the inherent 
challenges in establishing a universally accurate emission figure for this context.

3.4 � Estimating the transportation trade‑offs

The values representing the trade-off between emissions, travel time, and cost are 
relevant in pinpointing users with stronger pro-environmental attitude and formulat-
ing effective policies. Following the recommendation by Aziz and Ukkusuri (2014), 
we define Z(ci) for city ci as the emissions trade-off index to compute the trade-off 
among travel time (TT), CO2e emissions (EM), and cost across all available trans-
portation modes when selecting a trip. Our formulation is detailed as follows:

(1)Z(ci) = �TT ⋅ �TT (ci) + �EM ⋅ �EM(ci) + �Cost ⋅ �Cost(ci)
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In this equation, �j represents the weight associated with each element, �j(ci) sig-
nifies the normalized trade-off index associated with each element for the city ci , 
where j ∈ {TT ,EM,Cost}.

Estimating transportation costs is challenging due to their variability, which is 
influenced by external factors such as booking timing and method. Therefore, we 
used estimation methods for this study. In the case of calculating flight costs to reach 
a destination, we leverage per kilometer estimates provided by  Rome2Rio (2018) 
for the top 200 airlines and their respective domestic and international flights. Our 
approach involves mapping the airline’s per kilometer price, specifically when 
booked four weeks in advance, to the international and domestic categories based 
on whether the destination is within the same or a different country, respectively. We 
acknowledge the challenges in mapping costs for multi-carrier airlines, limiting our 
current model to direct flights or those with a single airline. We adopt the estima-
tion provided by Euronews (2023) for train travel, setting the cost at 0.14 euros per 
kilometer for tickets booked four weeks in advance. When it comes to driving, we 
determine costs based on estimations of the average cost per kilometer of fuel for the 
country where the journey originates. To achieve this, we use data from European 
Commission – Alternative Fuels Observatory (2022) for country-specific fuel price 
estimations. While these estimates may not be entirely precise, they serve as a help-
ful tool for cost modeling.

This paper focuses on data involving up to three transportation modes between 
cities. We compute travel time, emissions, and cost trade-offs for each trip across all 
available transportation modes. To ensure consistency, we normalize time (in hours), 
emissions (in kilograms), and costs (in euros) across all modes between values 0 and 1 
using min–max normalization (Patro and Sahu 2015). This normalization also yields 
relative values, allowing comparisons across different transportation modes. Mathe-
matically, the normalized trade-off for each element can be calculated as follows:

where V (i) = {V
(i)

TT
,V

(i)

EM
,V

(i)

Cost
} is the set of factors across all modes of transportation 

involved in the emissions trade-off index for a trip. In this context, each element of 
�j(ci) varies between 0 and 1. Zero signifies the most favorable alternative, whereas 
one indicates the least favorable one. We learn the weights �TT , �EM and �Cost from 
the user study explained in Sect. 6.

By examining trade-off values, we can gain insights into user behavior and for-
mulate effective policies, such as implementing strategies to enhance travel time on 
routes with lower emissions and higher costs. The lower the Z(ci) for a city ci , the 
less damaging it is to visit that city from the users’ point of origin and thus more fair 
from a societal perspective. However, it is important to recognize that the interpreta-
tion is context-sensitive, as travel time, emissions, and costs are distinct variables 
that cannot be interchanged. The model informs us explicitly about the trade-off 
involved in travel decision-making for sampled users, considering factors like trip 
duration, emission, and context.

(2)Nj(ci) =
V
(i)

j
−min(V (i))

max(V (i)) −min(V (i))
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3.5 � Summary

This section outlines the methodology used to collect data and estimate CO2e emis-
sions for transportation to various European cities concerning a user’s starting loca-
tion. We collected data for three transportation modes: flights from Google Flights, 
driving from Google Maps Routes API and OSRM API, and train connections for 
major German cities and their neighboring countries from Bahn.Expert website. 
While this study focused on European data sources, the methods employed are 
adaptable and can be extended to incorporate data from other providers worldwide.

To account for the CO2e emissions for each mode of transport, we used a sim-
plified distance-based model utilizing the concept of “emissions trade-off index” 
to evaluate trade-offs among travel time, CO2e emissions, and cost across different 
modes of transport. A lower index indicates less environmental impact from visit-
ing a city from the user’s origin, enhancing societal fairness. Analyzing these trade-
off values offers insights into user behavior, informing potential policy strategies to 
optimize routes with lower emissions and higher costs. While our model sheds light 
on travel decision-making trade-offs, future iterations could incorporate additional 
factors contributing to CO2e  emissions during city trips, such as accommodation 
and food consumption.

4 � Tourist destination popularity

Cities often struggle with the negative impacts of tourism, such as elevated housing 
prices, intensified traffic, and increased congestion, leading to resident dissatisfac-
tion and anti-tourism sentiment  (Camarda and Grassini 2003; Gowreesunkar and 
Vo Thanh 2020; Seraphin et al. 2018). To combat this, “de-tourism” initiatives aim 
to redirect tourists towards less crowded, alternative destinations. Promoting these 
hidden gems through official channels and collaborative social marketing helps dis-
tribute tourism more evenly and alleviates pressure on popular spots  (San Tropez 
2020). However, destination popularity, largely driven by online presence, plays 
a significant role in tourist decision-making. Search engine activity, social media 
engagement, and user-generated content like reviews and captivating visuals con-
tribute to a location’s attractiveness  (Weng et  al. 2022). Research indicates that a 
substantial 83% of tourists utilize Google Images for destination-related searches 
before embarking on their travels, and these images are pivotal in shaping tourists’ 
perceptions of a destination and influencing their travel decisions (Pan et al. 2007; 
Tasci and Gartner 2007). Therefore, when recommending sustainable travel desti-
nations from a particular city, it is important to go beyond the popular options and 
discover the lesser-known cities or hidden gems that many tourists do not frequent. 
This approach helps to balance the tourist load more evenly among cities.

In our study, we assess popularity across three dimensions—the prevalence of 
city images searched on Google (GT), the number of points of interest (POI) at a 
destination, and various forms of user-generated content (UGC), such as reviews 
and photos. These components serve as proxies for popularity, and a strong cor-
relation between the number of reviews and attractions indicates a highly popular 
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destination. The collected data is normalized to derive a popularity index for each 
city. The city’s popularity index can be incorporated into a recommender system, 
aiding users in decision-making and promoting selecting destinations with lower 
popularity.

4.1 � Data gathering

To estimate the popularity of a city, we gathered data from two prominent sources—
Tripadvisor and Google Trends. The sections below explore the details of the data-
gathering process.

4.1.1 � Tripadvisor

Tripadvisor is a popular online platform aggregating user-generated reviews and rat-
ings for travel-related entities, such as accommodations, restaurants, and attractions. 
To estimate the popularity of cities, we utilized web scraping techniques on the Tri-
padvisor platform to gather key metrics such as the total number of reviews, num-
ber of attractions (POI), reviews on attractions, and photos of attractions for each of 
the 200 European cities that we had gathered in Sect. 3.1. Major tourist cities such 
as London, Paris, and Rome exhibit the maximum number of attractions, reviews, 
opinions, and photos, a finding consistent with expectations. Table 2 summarizes the 
basic statistics of the Tripadvisor data.

The data reveals a striking similarity between attraction review lists and photo 
counts. To validate our hypotheses, we conducted a correlation analysis examining the 
relationship between the overall reviews and opinions, the number of attraction reviews, 
and the number of attraction photos at each destination. The analysis revealed an excep-
tionally strong correlation, exceeding 0.90. Additionally, a T-test (Eisenhart 1979) was 
performed to assess the significance of this correlation, and the results confirmed its 
statistical significance. Therefore, we consider a combined count of reviews and opin-
ions for a particular city for our popularity index, serving as a proxy for all the user-
generated content elements.

Table 2   Table summarizing different data sources and their basic statistics used for calculating the popu-
larity index for a city

Data sources Attributes Statistics

Min Mean SD Max

Tripadvisor POI # attractions 5.0 683.80 1338.59 8999
UGC​ Total # reviews & opinions 217 302,935.5 853,071.2 7,099,844

# attraction reviews 0 74,058.54 212,555.9 1,795,447
# attraction photos 0 56,214.04 140,800.1 1,019,360

Google Trends GT Images 0 13.70 5.90 100
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4.1.2 � Google Trends

We used Pytrends10 to collect weekly data from Google Trends (GT) within the 
travel category for the year 2022. Focused worldwide and on English-language 
search results, GT normalizes search data to facilitate comparisons between terms. 
This normalization involves dividing each data point by the total searches within 
its corresponding geography and time range, ensuring relative popularity compari-
sons and preventing biases toward regions with higher search volumes. The result-
ing values are scaled from 0 to 100, reflecting a topic’s proportion to all searches. 
It’s important to note that regions with the same search interest for a term may not 
always share the same total search volumes (Google Trends 2012).

We conducted a correlation analysis between the GT and Tripadvisor data to gain 
deeper insights into the data, focusing specifically on POI and UGC components for 
the respective cities. Surprisingly, the analysis revealed a notably low correlation but 
was statistically significant. This suggests that the patterns in Google search trends 
for cities, as measured by image searches, do not strongly align with the popularity 
of attractions and user-generated content on Tripadvisor. Therefore, we treat GT as 
a distinct entity in our popularity index estimation, recognizing its divergence from 
other indicators.

4.2 � Estimating destination popularity

Quantifying a city’s popularity is complex due to its multifaceted nature. This paper 
proposes a method to define city popularity based on metrics derived from Tripadvisor 

0.0 0.2 0.4 0.6 0.8
Normalized Values

Amsterdam

Barcelona

Berlin

Brussels

Madrid

Munich

Paris

Vienna

Se
le

ct
ed

 C
iti

es
0.30

0.50

0.24

0.11

0.38

0.11

0.71

0.17

0.36

0.57

0.31

0.12

0.35

0.11

0.72

0.19

0.49

0.50

0.09

0.57

0.60

0.06

0.90

0.31

πPOI

πUGC

πGT

Fig. 2   Bar plot showing the normalized values of the popularity index components for selected cities 
(color figure online)

10  https://​pypi.​org/​proje​ct/​pytre​nds/.

https://pypi.org/project/pytrends/
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and the GT data as explained above in Sect. 4.1. The popularity index �(ci) of a city 
ci is expressed as a weighted sum of various popularity components – �POI , �UGC , 
and �GT denoting the points of interest, number of reviews and opinions available on 
Tripadvisor and google trends index for the last one year respectively for a city ci . 
To ensure consistency, we employ min–max normalization  (Patro and Sahu 2015), 
as depicted in Eq. (2), to standardize all component values within the range of 0 to 
1.  Figure 2 displays the normalized values of various components constituting the 
popularity index for a chosen group of cities. The contrast in popularity is evident, 
with larger cities like Paris and Barcelona grappling with overtourism, while Munich 
and Berlin, comparatively less popular, showcase a distinct difference. Based on this, 
we define the popularity index �(ci) for the city ci as follows:

where �j for j ∈ {POI,UGC,GT} are the weights assigned to each component of 
the popularity index. We derive the weights, �j , for the popularity index components 
through a user study, as detailed in Sect. 6. This process involves determining the 
quantitative contributions of factors within the popularity elements to the overall 
popularity index, relying on user preferences and perceptions. By adopting this user-
driven approach, the assigned weights for each component reflect user opinions and 
behaviors, thereby incorporating a human-centered dimension into the calculation of 
city popularity. We aim to recommend destinations with a lower popularity index to 
foster a balanced distribution of tourist traffic, even in less popular yet attractive cit-
ies, thus mitigating overtourism at popular destinations.

4.3 � Summary

In this section, we investigate destination popularity and its influence on tourist behav-
ior, particularly in addressing the challenge of overtourism. TRS must balance well-
known options with lesser-known gems to recommend sustainable destinations, distrib-
uting tourist traffic evenly among cities. We utilized Tripadvisor and Google Trends 
data to quantify city popularity based on user reviews, points of interest, and search 
trends. Using metrics from these sources, our proposed method assigns a popularity 
index to the cities and recommends destinations with a lower popularity index. This 
allows us to prioritize recommendations for less popular cities while considering their 
attractiveness, aiming to promote a more balanced and sustainable tourism ecosystem.

5 � Seasonal destination demand

The personalized recommendation algorithms on online platforms often prior-
itize specific destinations, leading to a high concentration of tourists during cer-
tain seasons while overlooking less-visited places (Gowreesunkar and Vo Thanh 
2020). TRS can intervene in this issue by redirecting tourists to less crowded 
destinations and avoiding peak seasons, thereby ensuring a consistent distri-
bution of tourists throughout the year across all seasons. Cities can exhibit a 

(3)�(ci) = �POI ⋅ �POI + �UGC ⋅ �UGC + �GT ⋅ �GT
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variety of seasonal touristic patterns, including single peaks, dual peaks, and 
consistent year-round visitation, with causes attributed to both natural factors 
like climate and institutional factors such as holidays and cultural practices (But-
ler 1998; Corluka 2019; Suštar and Ažić 2020). Our objective is to assign a sea-
sonal demand index to each city for a given month, providing an estimation of 
its appeal to tourists. The aim is to recommend destinations with a low season-
ality index, ensuring a consistent tourist presence throughout the year or balanc-
ing tourist loads across different destinations.

When generating recommendations, the seasonality index provides comple-
mentary information to the popularity index. While the popularity index offers 
an aggregated view of a destination’s appeal over the entire year, the seasonality 
index, on the other hand, provides a more nuanced, month-by-month analysis. 
This distinction is essential for travelers planning their trips. Although helpful, 
the popularity index might not fully capture a destination’s unique characteris-
tics or visitor trends in a specific month. In contrast, with its monthly granular-
ity, the seasonality index offers a more accurate representation of what a traveler 
can expect during their chosen travel period.

5.1 � Data gathering

To gauge the seasonal variations in tourist activity, we explore monthly visitor 
counts and bednight statistics from TourMIS and financial seasonality indica-
tors, such as the average daily rates (ADR) from Airbnb. The ensuing sections 
elaborate on these data-gathering processes.

5.1.1 � TourMIS

TourMIS,11 a tourism marketing information system, offers complimentary and 
electronically accessible market research data to aid management decisions. Sup-
ported by the regional, national, and international tourist industry, TourMIS pro-
vides up-to-date tourism statistics and analyses, including arrivals and bed nights, 

Table 3   Table summarizing different data sources and their basic statistics for calculating the destina-
tion’s seasonality index 

Data source Attributes Statistics

# cities Min Mean SD Max

TourMIS NFIs AVC 64 489 192,125.56 293,783.60 2,188,497
BN 69 1163 415,708.25 675,550.57 5,260,073

Airbnb FI ADR 45 68.09 316.88 418.63 2013.13

11  https://​www.​tourm​is.​info.

https://www.tourmis.info
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for informed decision-making  (Wöber 2003). The monthly arrival visitor count 
(AVC), encompassing both foreign and domestic data, and the number of bed nights 
(BN) for European cities in 2022 are considered in our analysis. The dataset includes 
information for 65 cities regarding AVC and 70 cities for BN, with an overlap of 63 
cities. Leveraging this data, we estimate the footfall in cities for respective months.

Exploratory data analyses on the TourMIS data revealed that a minimum AVC 
of 489.0 was recorded in January for the city of Eisenstadt, while Paris recorded a 
maximum AVC of 2,188,497 in July as evident from Table 3. Similarly, Eisenstadt, 
Austria, documented the minimal number of bednights for January, while Paris still 
accounted for the maximum number in July. These insights illuminate the dynamic 
nature of tourism, showcasing the fluctuating visitor counts and bednights across 
various months and cities. Notably, the data suggests heightened touristic activity 
during the summer compared to winter.

We performed correlation analyses on the bednights (BN) and monthly AVC data 
from TourMIS. The results unveiled a consistently strong correlation ( > 0.98 ) for 
each month among cities where data for both variables were available. To deter-
mine if this correlation trend holds for the entire population of cities, we carried 
out a T-test (Eisenhart 1979) with a significance level (p) of 0.05. The test yielded 
significant results, indicating sufficient evidence to conclude that the correlation sig-
nificantly differs from zero in the population. Therefore, for our subsequent calcu-
lations, we exclusively consider the AVC numbers. It’s important to acknowledge 
that our approach utilizes absolute figures for AVC without normalizing them based 
on the size of the cities. Although attempts were made to normalize city sizes, the 

Fig. 3   Visualization of the normalized monthly arrival visitor count (AVC) represented in green and 
monthly average listing price on Airbnb in blue for selected cities (color figure online)
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outcomes were heavily skewed towards small cities. Our method accurately reflects 
the seasonal demands of smaller cities, which often feature numerous attractions.

5.1.2 � Airbnb

To quantify the impact of financial indicators like average daily rate (ADR) on sea-
sonality, we leverage the calendar.csv dataset sourced from Inside Airbnb.12 
This dataset includes details on the availability and daily pricing of all listed accom-
modations within a city. Our analysis focuses on the latest data from September 
2023 and covers a one-year duration for 45 European cities.

A foundational exploratory analysis of the data is presented in Table 3. In Febru-
ary, the lowest ADR was observed in Riga, while Oslo reported the highest ADR 
in July. These findings affirm the presence of seasonal demand variations across 
months, with increased demand in the summer, and align with the economic dis-
parities between the cities  (Statista Research Department 2023a).   Figure  3 illus-
trates the normalized monthly AVC in green and the monthly average listing price 
on Airbnb in blue for selected cities. The two variables exhibit a similar trend in 
most cases, except for Brussels. This deviation in Brussels can be attributed to more 
business travelers  (Santos and Cincera 2018). Specific peaks in Munich’s accom-
modation prices during September are representative of Oktoberfest, while gener-
ally, prices are elevated in the summer months, followed by a gradual decline in the 
winter months.

Despite these observed patterns, the correlation coefficients for each month across 
all cities were negatively correlated and statistically insignificant. Consequently, we 
opted to include the ADR values of the cities for each month as a separate compo-
nent in our analysis of the financial indicators of tourism demand.

5.2 � Estimating seasonal demand

In literature, the Gini coefficient stands out as a widely employed tool for assess-
ing tourism seasonality  (Þórhallsdóttir and Ólafsson 2017; Suštar and Ažić 2020; 
Ferrante et al. 2018). This coefficient offers distinct advantages, including its abil-
ity to consider distribution asymmetry, relative insensitivity to extreme values, 
and an indication of stability in the distribution of overnight stays within a single 
year (Suštar and Ažić 2020). In our paper, the Gini coefficient serves as a numerical 
metric quantifying the level of inequality in the distribution  (Gini 1921). Derived 
from the Lorenz curve, which illustrates the cumulative frequency of ranked obser-
vations starting from the lowest number, the Gini coefficient provides a comprehen-
sive measure of the destination’s demand at a particular time of the year. The ana-
lytical formula frequently used for Gini coefficient calculation, applied in this paper, 
is expressed as (Gastwirth 1972; Þórhallsdóttir and Ólafsson 2017):

12  http://​insid​eairb​nb.​com/​get-​the-​data.

http://insideairbnb.com/get-the-data
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where

In the context of seasonal tourism demand, studies suggest that the average room 
price is one of the pivotal business performance indicators in the hotel indus-
try  (Israeli 2002; O’Neill and Carlbäck 2011; Pine and Phillips 2005). We calcu-
late the seasonality Gini index for a city using Gini coefficients derived from non-
financial (NFI) and financial indicators (FI), as described by Suštar and Ažić (2020). 
Non-financial indicators consist of monthly counts of arriving visitors (AVC) from 
TourMIS, while financial indicators involve the ADR computed from Airbnb list-
ings. The Gini coefficient values for each indicator span from zero to one, with zero 
signifying a complete lack of seasonality and seems to be an active or equal distribu-
tion of volumes all year round. A Gini coefficient of one indicates complete season-
ality, i.e., the total volume is registered in one single month (Suštar and Ažić 2020). 
Gini coefficients are computed annually for AVC, while monthly calculations are 
performed for ADR.

As illustrated in  Fig. 3, the monthly average prices of listings exhibit significant 
fluctuations depending on the city and month. Therefore, it is advisable to model 
these fluctuations daily to enhance the precision of our estimations. Similarly, if data 
is available daily or weekly granularity, the AVC numbers could be modeled at those 
levels for more accurate analyses. The aggregated seasonality index �(cj

i
)  across all 

indicators for a city ci for month j for can be calculated as follows:

(4)G =
2

n

n
∑

i=1

(xi − yi)

n = the number of fractiles, months, weeks, days, or other units

xi = the rank of fractiles, for example,

1

12
,
2

12
,… when using months, or when using weeks

1

52
,
2

52
,… , or days

1

365
,

2

365
,… , etc. So xi =

i

n

yi = the cumulated fractiles in the Lorenz curve

Table 4   Analysis of the 
relationship between 
Airbnb ADR and TourMIS 
AVC: Pearson’s correlation 
coefficients and T-test results for 
selected European cities

City Pearson’s correlation coef-
ficient

T-test results

Amsterdam 0.659 Significant
Barcelona 0.458 Not significant
Berlin 0.746 Significant
Brussels − 0.312 Not significant
Madrid 0.515 Not significant
Munich 0.125 Not significant
Paris 0.317 Not significant
Vienna 0.611 Significant
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where Γk where k ∈ {AVC,ADR} represents the weights as derived from the user 
study. We aim to recommend cities with lower �(cj

i
) , ensuring a consistent tourist 

presence throughout the year or balancing tourist loads across different destinations. 
After examining Pearson’s correlation coefficient between the two data sources for a 
selected list of cities common in all datasets, we merged the non-financial indicator 
(AVC) and the financial indicator (ADR) to compute our seasonality index.  Table 4 
shows that while some cities like Amsterdam, Berlin, and Vienna exhibit a signifi-
cant positive correlation, the correlation is not statistically significant for other cit-
ies, indicating an unclear relationship that cannot be relied upon as a single data 
source. While ADR can capture short-term fluctuations in the tourism market, the 
AVC provides a broader perspective on tourism trends throughout the year. By inte-
grating both, we achieve a balanced assessment of monthly seasonal demand for the 
cities.

We calculate the Gini coefficients for the AVC and ADR, presenting the results 
in  Table  5. Madrid exhibits the least seasonality in AVC, suggesting consistent 
demand throughout the year, while Munich registers the highest seasonality. Addi-
tionally, Brussels displays minimal seasonality in ADR (close to 0), and Munich 
exhibits maximum ADR seasonality in September and October. The heightened sea-
sonality in Munich’s AVC and ADR can also be attributed to the annual Oktoberfest 
event occurring in September (Herrmann and Herrmann 2014).

5.3 � Summary

We examine tourism seasonality and its influence on tourist load distribution across 
destinations by proposing a monthly seasonality index. We aim to mitigate over-
crowding by promoting travel during months with lower demand. We focus solely 
on demand estimation to gauge monthly city crowdedness.

According to research, the most effective way to measure tourism seasonality is 
by computing the Gini coefficients of various financial and non-financial indica-
tors (Suštar and Ažić 2020). We collected data from TourMIS and Airbnb to analyze 
non-financial indicators such as monthly arrival visitor counts (AVC) and financial 
indicators like average daily rates (ADR), respectively. The seasonal demand index 
is a weighted combination of Gini coefficients calculated from non-financial and 
financial indicators.

We leverage data from two distinct sources to minimize any discrepancies 
between them. Our approach considers short-term fluctuations captured by ADR 
and a broader perspective offered by AVC. To maintain consistency in the overall 
data pattern, we normalized them separately for each data source. Traditional sea-
sonal factors such as climate, economic development, and institutional causes such 
as city events were deliberately excluded from our index calculation, as they do not 
directly contribute to sustainable recommendations. Our findings reveal that tourism 
demand follows distinct seasonal trends, with peak activity typically occurring dur-
ing summer.

(5)�(c
j

i
) = ΓAVC ⋅ G

(i)

AVC
+ ΓADR ⋅ G

(i)(j)

ADR
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Overall, the seasonality index can help understand the combined impact of tour-
ist influx and accommodation prices on the overall attractiveness of a destination 
throughout the year at a monthly granularity. When choosing destinations for spe-
cific months, the seasonality index offers a more nuanced perspective than visi-
tor numbers or average prices. This can be particularly useful in identifying less 
crowded destinations during peak travel seasons.

6 � User perception of sustainable city trips

To explore how users perceive sustainability when looking for city trip recommen-
dations, we conducted a user study involving participants with diverse travel experi-
ences and preferences. This method provides valuable insights into decision-making 
intricacies, as established by prior research  (Wilson 1981). By directly engaging 
real-world participants in simulated scenarios, we aimed to discern how tourists 
assess different aspects of a city trip, negotiate trade-offs, align preferences with sus-
tainable tourism practices, and assign weights to criteria in their decision-making.

6.1 � User study design

The primary objective of our user study was to gain a deeper understanding of the 
factors influencing individuals’ decisions when selecting a city for vacation and their 
receptiveness to sustainable recommendations for tourism destinations. Respondents 
were prompted to imagine planning their next vacation to another European city 
and identify the most crucial factors influencing their choice of destination. Only 
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a limited set of personal demographic questions about the users’ age, gender, and 
nationality were asked to preserve the participants’ privacy.

The questionnaire was designed using Qualtrics Experience Management Soft-
ware,13 an online survey platform. We recruited participants through the online 
crowdsourcing platform Prolific,14 renowned for its efficacy in subject recruitment 
for the scientific community (Palan and Schitter 2018). With a focus on European 
participants who listed travel as one of their hobbies, the questionnaire, designed 
in English, was distributed to individuals through Prolific’s advanced pre-screening 
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13  https://​www.​qualt​rics.​com.
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options, and 200 final responses were collected. To ensure gender diversity, the pre-
set distribution aimed for an equal representation of 50% males and 50% females. 
Demographic analyses of the survey data indicated that 33.8% of the participants 
fell within the 25–34 age group, followed by 24.3% in the 18–24 age group, and the 
remaining were above the age of 35.

6.2 � Transportation sustainability concerns

Participants were presented with seven distinct scenarios, elaborated in Fig. 4. These 
scenarios illustrated trips between cities involving diverse modes of transportation—
such as train, flight, and driving to gauge their inclination towards making sustain-
able choices when selecting their mode of transport. The CO2e estimations and the 
costs tailored to each mode of transportation were computed based on the values 
in Table 1 and Sect. 3.4 respectively. 

Figure 5 summarizes the mode distribution for various city pairs, indicating the 
percentages of user responses for different transportation modes (train, drive, and 
fly). Key takeaways include preferences for specific modes for each trip, reflecting 
the distribution of travel choices considering the associated distances. Notably, train 
travel dominates in several instances, with variations depending on the city pairs and 
their distances.

We investigated the reasons behind selecting trade-offs for various transportation 
modes in each trip scenario, as illustrated in Fig. 6. Our analysis reveals valuable 
insights from survey responses. For train travel, a significant 47.1% of respond-
ents prioritize convenience, while 15.65% emphasize selecting the mode with the 
least CO2e  emissions. Affordability is a critical factor for 13.91% of participants, 
and 8.70% opt for the cheapest option available. Additionally, 5.22% favor trains 
over flights for cost considerations. In contrast, driving is primarily chosen for its 
convenience and flexibility, with an overwhelming 73.81% of respondents highlight-
ing this aspect. Affordability remains a factor, as 18.57% opt for the cheapest driving 
option. Some respondents (6.67%) perceive driving as environmentally better than 
flying. Flying is chosen by 76.53% for its speed, while 11.91% remains unconcerned 
about CO2e emissions. The findings underline the multifaceted nature of decision-
making, encompassing convenience, environmental concerns, and cost considera-
tions across different transportation modes. Our results are consistent with those 
presented by  Avogadro et  al. (2021), which also indicates a preference for public 
transport over flying for shorter distances.

6.3 � Understanding trade‑offs

The user study also aimed to explore the various trade-offs associated with trip plan-
ning. Participants were presented with Likert scale  (Joshi et  al. 2015) statements 
from “not at all important” to “extremely important” to gauge their agreement lev-
els to the following statements: 
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S1:	� Importance of presence of off-season discounts.

S2:	� Climate at the destination.

S3:	� Cost savings by traveling during the off-season.

S4:	� Visiting the city during its best travel time, even during the peak tourist season.

S5:	� Overall attractiveness of the destination.

S6:	� The destination in terms of unique attractions, points of interest, etc., even if 
that means they are very popular.

S7:	� Cities that are widely popular, even if they might be crowded.

 
The analysis of user responses, as depicted in Fig. 7, provides insights into the 

trade-offs users are willing to make when considering various attributes in travel 
decision-making. Notably, for the attribute “popular but crowded,” a minimal per-
centage (2.99%) strongly agreed, while the majority (31.34%) agreed. Conversely, 
for the attribute “attractive but popular”, a significant proportion (55.22%) agreed, 
indicating a higher tolerance for popularity in the pursuit of attractiveness. The 
consideration of “overall attractiveness” saw 51.24% in agreement. Respondents 
expressed varying opinions on the “visiting in peak season”, with 1.99% strongly 
disagreeing and 33.83% expressing disagreement. Furthermore, factors such as “off-
season cost savings”, “Climate at the destination” during the time of travel, and 
“off-season discounts” revealed nuanced preferences, with notable percentages in 
agreement (51.74, 37.31, 39.30%, respectively) and distinct proportions holding dis-
senting views. These results contribute valuable insights into the varied considera-
tions influencing users’ travel preferences.
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7 � Societal Fairness

This section explores the concept of Societal Fairness (S-Fairness), which is a cru-
cial component in evaluating city trip recommendations. S-Fairness seeks to ensure 
that tourism benefits and impacts are distributed fairly among a broad range of 
stakeholders, including not only tourists, service providers, and platforms, but also 
non-participating entities such as residents, locals, and the environment  (Banerjee 
2023; Banik et al. 2023).

To evaluate S-Fairness across different destinations, our methodology combines 
insights from established data sources with findings from a comprehensive user 
study, providing a comprehensive perspective. We define the Societal Fairness Indi-
cator (S-Fairness Indicator) by quantifying the overall impact of a destination on 
both the environment and society relative to the user’s starting location.

7.1 � Defining the S‑Fairness indicator

Each destination ci during the month j accessible from the user’s origin is assigned 
an S-Fairness Indicator, denoted as SFI(cj

i
) . This indicator is determined through a 

weighted combination of three essential components 

1.	 Emissions trade-off index Z(ci) from Sect. 3 with its normalized weight repre-
sented by �

2.	 Popularity index �(ci) from Sect. 4 with its normalized weight denoted as �
3.	 Seasonality index �(cj

i
) from Sect. 5 with its normalized weight represented by Γ

.

The formulation is expressed as:

Here, SFI(cj
i
) falls within the range of zero to one, where a higher indicator signi-

fies a more adverse impact on society. The allocation of weights to these indica-
tors reflects the significance of considering emissions, popularity, and seasonality 
in evaluating the societal fairness of a destination. This approach, integrating both 
quantitative and user-centered perspectives, strengthens the effectiveness of our 
S-Fairness Indicator.

7.2 � Learning weights of the indices

One of the main goals of the user study described in Sect. 6.1 was to understand the 
importance of different factors that the users consider when choosing travel destina-
tions. Participants were requested to prioritize their transportation choices based on 
travel time, CO2e footprint, and cost. They also provided feedback on other essential 
factors, such as the number of points of interest, Google image search values, and 
the total number of Tripadvisor reviews and opinions. Additionally, they indicated 

(6)SFI(c
j

i
) = � ⋅ Z(ci) + � ⋅ �(ci) + Γ ⋅ �(c

j

i
)
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the importance of costs associated with available accommodation and crowd levels 
in the city during their visit. These factors align with the coefficients of the “emis-
sions trade-off index” Z(ci) in Eq. (1), “popularity index” �(ci) in Eq. (3), and “sea-
sonality index” �(cj

i
) in Eq. (5) respectively.

Finally, the participants were prompted to assess the influence of various factors 
on their decision-making process to estimate the weights associated with the com-
bined S-Fairness Indicator SFI(cj

i
) , as illustrated in  Eq.  (6). They were explicitly 

asked about the impact of factors such as having a lower CO2e footprint, opting for a 
less famous city, and avoiding the busiest time of the year when making travel deci-
sions. All the responses were gathered using a 5-point Likert scale.

We calculated weighted averages on Likert scales, spanning from “not important 
at all”, having a minimum weight of 1, to “extremely important”, with a maximum 
weight of 5, enabling us to identify patterns in the composite indicator. The distribu-
tion of the absolute values of these weights, obtained through the weighted average 
of Likert scale results, are shown in Fig. 8. Additionally, we applied min–max nor-
malization (Patro and Sahu 2015) to normalize these averages within each category, 
enabling us to gauge their relative significance in their respective categories. These 
normalized weights offer valuable insights into participants’ preferences and priori-
ties, shedding light on the factors that significantly influence their decision-making 
when choosing travel destinations. After incorporating the normalized weights, 
the expressions for the emissions trade-off index, popularity index, and seasonality 
index can be revised as follows:

(7)Z(ci) = 0.352 ⋅ �TT (ci) + 0.218 ⋅ �EM(ci) + 0.431 ⋅ �Cost(ci)

(8)�(ci) = 0.469 ⋅ �POI + 0.325 ⋅ �UGC + 0.206 ⋅ �GT
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Combining the weighted formulations presented in Eqs. (7), (8), and (9), we obtain 
the updated values for the S-Fairness Indicator SFI(cj

i
) as follows:

The weights here represent the importance assigned to different attributes within 
each category. Notably, in the emission trade-off category Z(ci) , the highest weight 
is given to the cost attribute ( �Cost ), indicating that users prioritize the cost factor 
when evaluating emission indices. In the popularity category �(ci) , the points of 
interest ( �POI ) attribute carries the highest weight, suggesting that users prioritize 

(9)�(c
j

i
) = 0.443 ⋅ G

(i)

AVC
+ 0.557 ⋅ G

(i)(j)

ADR

(10)SFI(c
j

i
) = 0.281 ⋅ Z(ci) + 0.334 ⋅ �(ci) + 0.385 ⋅ �(c

j

i
)

Fig. 9   Snapshot of the sample user interface showing top travel recommendations from Munich for July 
while highlighting the S-Fairness Indicator in the top right corner, shown to the participants during the 
user study (color figure online)
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locations with significant points of interest. However, in the S-Fairness Indicator 
category SFI(cj

i
) , the weight distribution is relatively balanced among the attributes 

� , � , and Γ , indicating a more equitable consideration of these factors.
The composite S-Fairness Indicator SFI(cj

i
) assigned to each city ci for the month 

j signifies the extent of negative environmental impact associated with traveling to 
the city from users’ starting points. A lower value of SFI(cj

i
) indicates a more envi-

ronmentally friendly choice and lesser harm caused. Our objective is to encourage 
individuals to visit cities with lower S-Fairness Indicator relative to their starting 
points, aiming to minimize the adverse effects of tourism on the environment and 
promote sustainable and responsible tourism practices.

7.3 � Integrating S‑Fairness Indicator into TRS

In this section, we present a separate user study demonstrating how our proposed 
S-Fairness Indicator can be integrated into a TRS in real-world scenarios. To 
evaluate the effectiveness of our S-Fairness Indicator, we recruited 200 European 
residents through Prolific, ensuring gender balance and an interest in travel. Par-
ticipants were shown a user interface snapshot Fig. 9 that displayed the top travel 
destinations from Munich for July. It included a photograph and brief overview 
of each destination, as well as travel time and CO2e emissions information for 
different modes of transportation from Munich. To aid comprehension, each city 
was labeled with popularity and seasonality tags denoting their respective levels 
of popularity and monthly seasonality. Cities within the top 5 percentile of their 
respective popularity and seasonality indices were categorized as high, those 
in the top 50 percentile as medium, and the rest as low. We assigned an overall 
S-Fairness Indicator out of 100 to each city, displayed in the top right corner. 
This was derived by multiplying our S-Fairness Indicator from Sect. 7.2 by 100. 
It represents the city’s overall sustainability status when traveling from Munich.
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Following the presentation, participants were tasked with expressing their 
opinions on the provided statements using a 5-point Likert scale  (Joshi et  al. 
2015) ranging from “strongly disagree” to “strongly agree”. The statements cov-
ered the following aspects: 

S1	� The assigned S-Fairness Indicator scores accurately reflect the sustainability of 
the showcased city destinations.

S2	� Cities with lower S-Fairness Indicator scores are perceived as more appealing 
for travel.

S3	� S-Fairness Indicator are deemed helpful in facilitating informed decisions 
about preferred travel destinations.

The results are depicted in Fig. 10, revealing a generally positive reception to 
the S-Fairness Indicator as a sustainability indicator. A majority of users (72%) 
expressed neutrality or agreement, with 4% of the users expressing very strong 
agreement. The “lower value, higher appeal” metric showed a similar trend, 
with 84% ranging from neutral to solid agreement, including strong agreement, 
suggesting that a lower value of S-Fairness Indicator correlates with higher user 
appeal. However, the “overall helpful metric” elicited more varied responses, 
with 30% of users agreeing and 32% disagreeing. Given the marginal difference 
between agreement and disagreement, particularly concerning this metric, it is 
possible that users did not fully grasp the concept presented in the interface. 
Improving the representation or providing clearer motivation in the user inter-
face may address this issue in future iterations. This limitation of our study will 
be addressed in subsequent research efforts. AgainFuture interface versions could 
also investigate alternative ways to present the S-Fairness Indicator, such as using 
a higher score to indicate a greater impact by inverting it or scaling the score 
differently to determine whether these changes improve user satisfaction and 
increase their likelihood of selecting more sustainable destinations. Overall, there 
is a trend of approval across all metrics, with even the least favorable response 
showing a majority of users being neutral to strongly agreeing on the value of the 
metrics.

While Fig. 9 serves as an illustrative user interface, the potential of this work 
extends to the development of a practical application. Such an application could 
present destinations and their S-Fairness Indicator, incorporating up-to-date 
information like real-time connectivity and cost considerations. Moreover, it 
could integrate additional metrics such as accommodation availability and envi-
ronmental factors like climate and air quality indices. This integration, coupled 
with user preferences, would enable the provision of real-time recommendations 
that align with sustainability principles and individual user preferences.

Additionally, as depicted in  Fig.  9, destinations are currently ordered by the 
S-Fairness Indicator. However, in practical scenarios, users may prefer sorting 
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destinations by emissions, popularity, and seasonality indices, given their varying 
importance to different individuals. Introducing a user interface that allows sorting 
and filtering by the individual components while making the associated trade-offs 
explicit would enhance the flexibility of the application. Similarly, the current repre-
sentation of popularity and seasonality labels (e.g., low, medium, or high) in Fig. 9 
could be refined through discrete categories to offer meaningful and actionable 
insights, contributing to a more user-friendly and informative interface. We intend 
to dive deeper into communicating sustainable recommendations to users as part of 
our future research.

8 � Conclusion

In conclusion, our research introduces a novel approach for assigning a sustainability 
indicator (S-Fairness Indicator) for city trips accessible from the users’ starting point, 
integrating CO2e emission analysis, destination popularity, and seasonal demand to 
provide well-rounded and sustainable city trip suggestions. The theoretical implica-
tion of this concept lies in extending sustainability beyond environmental concerns 
to ensure equitable benefit distribution among stakeholders. Our methodology, vali-
dated through a user study, showcases the model’s ability to provide well-rounded 
and sustainable city trip suggestions. The findings indicate that while there is a gen-
eral awareness of sustainability, tourists often prioritize convenience and personal 
preferences over sustainable choices. This gap highlights the need for more effective 
communication and education strategies to promote S-Fairness in city trip planning.

Our study is particularly interesting for stakeholders such as travelers seek-
ing sustainable travel options, tourism industry professionals looking to promote 
responsible tourism practices, and policymakers aiming to implement sustainability 
initiatives in urban tourism. While implementing our system is feasible by leverag-
ing existing data sources and technologies, challenges such as data availability and 
user adoption may need to be addressed. The absence of personalization features 
in the current version presents an opportunity for further research to explore this 
area to better understand user preferences and their decision-making processes. Fur-
thermore, our sustainability metric can also be extended to include other impacting 
factors such as accommodation availability or environmental factors such as climate 
and air quality index. In summary, our study integrates sustainability and societal 
fairness into TRS, laying the foundation for a system that aligns eco-friendly travel 
recommendations with the evolving traveler’s needs and preferences.
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