

Evaluating User Intent Classification and Hybrid Retrieval in a RAG-based Conversational Tourism Recommender System

Akshat Tandon*, Ashmi Banerjee*

Technical University of Munich, Germany

RecTour 2025
ACM RecSys Workshop on Recommenders in Tourism

Agenda

Introduction & Motivation

Our Approach: Hybrid RAG-driven Conversational TRS

Evaluation

Q&A & Discussion

Introduction

▲ Often leads to ...

Irrelevant or premature recommendation for new and underrepresented users

The Opportunity:

- Conversational interfaces enhance user experience.
- LLMs offer natural language understanding and world knowledge.
- Retrieval-Augmented Generation (RAG) grounds LLMs, preventing hallucinations.

Goal: Build a conversational tourism recommender that's intelligent, adaptive, and grounded

User Interaction Scenario

"Can you suggest a relaxing destination in Europe for early spring?"

Algarve, Seville, Santorini

That sounds interesting. I like beaches and less crowd. Can you tell me more about Algarve and its local cuisine there.

Perfect choice — Algarve is one of Europe's most relaxing early-spring beach destinations

Data Preparation

- Wikivoyage articles ~ 160 TXT files (structured & unstructured
- Tripadvisor API: Green hotels and attractions
- Total: Over 160 European cities

Preprocessing ()

- Clean Up
 - Remove uncommon headings from articles
 - Filter relevant features for hotels and attractions
- Context aware and recursive chunking of content

System Design

Modular Hybrid RAG-based Conversational Tourism Recommender System (C-TRS) to recommend European cities

How it Works:

- 1. Multi-turn conversational system.
- 2. Parses user utterances for **context &** intent.
- Utilizes dialogue state to manage conversation.
- Retrieves city-level chunks via hybrid semantic index (dense + sparse) + optional reranking of chunks.
- Augments LLM prompt with retrieved context.
- Generates grounded, context-aware responses

Retrieval - Hybrid Vector Similarity Search

- Hybrid vector search combines multiple retrieval strategies
 - Dense vectors capture semantic meaning and relationships
 - Sparse vectors enable lexical/keyword matching
- RRF merges ranked results
- Improves recall and answer quality

Intent-Aware Conversation Flow: Example

User Query: "Do you also know any locations where we can go skiing or snowboarding?"

User Intent Classification

Ask Recommendation

Provide Preference

Inquire

Accept Recommendation

Reject Recommendation

```
{
    "accepted_destinations": [...],
    "rejected_destinations": [...],
    "current_destination_of_interest": "...",
    "hard_constraints": {
        "activity": ["skiing", "snowboarding"],
        ...
    },
    "soft_constraints": {
        ...
    },
    ...
}
```


RAG - Augmentation

Evaluation - User Intent Classification

Goal: Evaluate the accuracy of user intent classification.

Methods Compared:

- Fine-tuned BERT (Supervised)
- BART-large-MNLI (Zero-Shot LLM)
- GPT-4o-mini (Zero-Shot LLM)
- GPT-4o-mini (Few-Shot LLM) Our Focus

Dataset: 330 labeled user utterances, split into 80/10/10 for training, validation, and testing

Key Finding:

- Few-shot classification with LLMs outperforms zero-shot across all metrics
- GPT-4o-mini achieves highest score across most metrics
- BERT remains competitive with a 91% precision and 88% F1-score

Evaluation - User Intent Classification

Model	Accuracy	Precision	Recall	F1-score
BERT Sequence Classifier	68 %	91 %	85 %	88 %
BART-large-MNLI (zero-shot)	3 %	32 %	67 %	43 %
GPT-4o-mini (zero-shot)	35 %	67 %	69 %	68 %
GPT-4o-mini (few-shot)	74 %	87 %	96 %	91 %

Evaluation - RAG Pipeline - Q&A

Goal: Evaluate the quality of retrieval and generation.

Framework: RAGAS (LLM judge: GPT-4o-mini | Response LLM: Llama-3.1-8B-Instruct | top_k: 5)

Metrics:

- Context Recall: Did we retrieve enough relevant chunks?
- Context Precision: Were retrieved chunks actually relevant?
- Faithfulness: Is the LLM output supported by retrieved context (no hallucination)?
- Answer Relevancy: Is the LLM output relevant to the query?

Evaluation - RAG Pipeline - Q&A

Experiment

- Compared different retrieval strategies (Dense, Sparse, Hybrid) with/without reranking.
 - 50 synthetically generated single-hop Q&A pairs for 5 European cities (Wikivoyage articles)

Key Findings

- Sparse vector search with reranking yields highest context recall (77%) and precision (83%)
- **Hybrid vector search** outperforms other approaches for **generation metrics**
- Reranking shows modest improvements in context precision

Evaluation - RAG Pipeline - Q&A

Vector Search Type	Context Recall	Context Precision	Faithfulness	Answer Relevancy
Dense Search	62 %	66 %	79 %	83 %
Dense Search + Rerank	62 %	68 %	75 %	81 %
Sparse Search	76 %	82 %	77 %	83 %
Sparse Search + Rerank	77 %	83 %	76 %	82 %
Hybrid Search	73 %	73 %	81 %	89 %
Hybrid Search + Rerank	68 %	75 %	79 %	90 %

Future Work

Conduct user study to expand the user intent and recommender action taxonomy

Conduct an ablation study to understand the contribution of intent-driven retrieval

Expand evaluation to larger datasets and multi-hop queries

Explore advanced prompting (e.g., CoT) or fine-tune smaller models for domain tasks

Thank You! Time for Q&A!

Akshat Tandon* akshat.tandon@tum.de

Ashmi Banerjee*
ashmi.banerjee@tum.de

*Equal Contributions